Passive scalar mixing in vortex rings

نویسندگان

  • RAJES SAU
  • KRISHNAN MAHESH
چکیده

Direct numerical simulation is used to study the mixing of a passive scalar by a vortex ring issuing from a nozzle into stationary fluid. The ‘formation number’ (Gharib et al. J. Fluid Mech. vol. 360, 1998, p. 121), is found to be 3.6. Simulations are performed for a range of stroke ratios (ratio of stroke length to nozzle exit diameter) encompassing the formation number, and the effect of stroke ratio on entrainment and mixing is examined. When the stroke ratio is greater than the formation number, the resulting vortex ring with trailing column of fluid is shown to be less effective at mixing and entrainment. As the ring forms, ambient fluid is entrained radially into the ring from the region outside the nozzle exit. This entrainment stops once the ring forms, and is absent in the trailing column. The rate of change of scalar-containing fluid is found to depend linearly on stroke ratio until the formation number is reached, and falls below the linear curve for stroke ratios greater than the formation number. This behaviour is explained by considering the entrainment to be a combination of that due to the leading vortex ring and that due to the trailing column. For stroke ratios less than the formation number, the trailing column is absent, and the size of the vortex ring increases with stroke ratio, resulting in increased mixing. For stroke ratios above the formation number, the leading vortex ring remains the same, and the length of the trailing column increases with stroke ratio. The overall entrainment decreases as a result.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of Jets in Crossflow using Direct Numerical Simulations A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY

We use direct numerical simulations to study control of jets in crossflow by axial pulsing. Our main idea is that pulsing generates vortex rings; the effect of pulsing on jets in crossflow can therefore be explained by studying the behavior of vortex rings in crossflow. A method is proposed that allows optimal values of pulsation frequency, modulation and energy to be estimated a priori. This i...

متن کامل

Title of Dissertation : PASSIVE SCALAR DISPERSION IN A TURBULENT MIXING LAYER

Title of Dissertation: PASSIVE SCALAR DISPERSION IN A TURBULENT MIXING LAYER Ning Li, Doctor of Philosophy, 2004 Dissertation directed by: Professor James M. Wallace Department of Mechanical Engineering Experimental and numerical studies of spatially developed turbulent mixing layers with passive scalar concentrations was performed. In the experiment, a mixing layer was created by an S-shaped s...

متن کامل

Mixing characteristics of an inhomogeneous scalar in isotropic and homogeneous sheared turbulence

Turbulent mixing of an inhomogeneous passive scalar field is studied in the context of a nonpremixed reacting flow. Direct numerical simulations of an initial steplike scalar field subjected to homogeneous sheared turbulence have been performed and the results compared with those of the case of decaying isotropic turbulence. For both flow conditions, the gradient of the conserved scalar tends t...

متن کامل

Wavelet filtering to study mixing in 2D isotropic turbulence

This paper presents the application of coherent vortex simulation (CVS) filtering, based on an orthogonal wavelet decomposition of vorticity, to study mixing in 2D homogeneous isotropic turbulent flows. The Eulerian and Lagrangian dynamics of the flow are studied by comparing the evolution of a passive scalar and of particles advected by the coherent and incoherent velocity fields, respectively...

متن کامل

On modal time correlations of turbulent velocity and scalar fields

We consider Eulerian two-point, two-time correlations of a turbulent velocity field and those of a passive scalar mixed by a turbulent velocity field. Integral expressions are derived for the modal time-correlation functions of the velocity and scalar fields using the stretched-spiral vortex model. These expressions are evaluated using asymptotic methods for high wavenumber and, alternatively, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007